If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-16X-45=0
a = 1; b = -16; c = -45;
Δ = b2-4ac
Δ = -162-4·1·(-45)
Δ = 436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{436}=\sqrt{4*109}=\sqrt{4}*\sqrt{109}=2\sqrt{109}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{109}}{2*1}=\frac{16-2\sqrt{109}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{109}}{2*1}=\frac{16+2\sqrt{109}}{2} $
| 2(3w+6)=-7 | | 0.7p+406=703-0.2p | | 3x²+5=-2x | | -5n-27=18+10n | | 2.25x=156.5 | | 22/8x=1561/2 | | 7+(2/5y)=(3/5y)-4 | | 12y-24=2(4y-4) | | 3(2l+3)=27 | | 27x−3=105 | | 4b+4=3b | | 21000/104=104/104*n | | 9+14x=8x+6 | | x(-12)=-19 | | 6x+5=3×+11 | | 9a-4(a-5)=30 | | 9a−4(a−5)=30 | | 2x+6=x+,9 | | w+-0.2=-15.4 | | 11/3x-21/3=0 | | 11-11c=77 | | 10=-5(3x+4) | | 10=-53x+4 | | F=7/6(n-47) | | -7/6v=-49 | | 2/3x+3x+4=11 | | 78/w=3 | | 5x^2+115+48x=0 | | 5(c-3)=2(c+3)+3c | | 6+2(6+4)/2=x6+2(10)/2=x6+10=x16=x | | 8^n=12 | | .03x^2-x+100=93 |